26 0 obj >> /Pg 382 0 R 51 0 R 52 0 R 53 0 R 54 0 R 55 0 R 56 0 R 57 0 R 58 0 R 59 0 R 60 0 R /P 16 0 R /P 16 0 R << /K 0 6 [45 0 R] /S /Part /S /Part /Kids [27 0 R 28 0 R 29 0 R 30 0 R 31 0 R 32 0 R 33 0 R] /Pg 467 0 R >> /P 16 0 R 320 0 obj 93 [132 0 R] We’ll generate the distribution using: 127 0 obj /Pg 487 0 R final-buk.dvi >> /P 16 0 R endobj 161 0 R 162 0 R 163 0 R 164 0 R 165 0 R 166 0 R 167 0 R 168 0 R 169 0 R 170 0 R 154 0 obj /Count 25 /Count 5 << endobj /Kids [596 0 R 597 0 R 598 0 R 599 0 R 600 0 R] 227 [266 0 R] << >> endobj endobj 332 0 obj /Pg 402 0 R /P 16 0 R /S /Part << 255 0 obj endstream >> >> >> endobj /P 16 0 R 104 0 obj /Pg 594 0 R endobj /Pg 496 0 R /S /Part /P 16 0 R /K 0
181 [220 0 R] /P 16 0 R 231 0 R 232 0 R 233 0 R 234 0 R 235 0 R 236 0 R 237 0 R 238 0 R 239 0 R 240 0 R /P 16 0 R 145 [184 0 R] /Pg 430 0 R /K 0 << << << /BleedBox [0 0 414.73 625.692] >> /Pg 355 0 R /P 16 0 R /K 0 /Count 257 /P 16 0 R /P 16 0 R /K 0 9 [48 0 R] /K 0 >> << >> endobj /Parent 24 0 R endobj /K 0 77 [116 0 R] 5 [44 0 R] << 10 [49 0 R] endobj /Limits [128 159] /S /Part application/pdf 236 0 obj << /P 11 0 R << 93 0 obj /P 16 0 R 213 0 obj 135 [174 0 R] >> 297 0 obj /S /Part 184 [223 0 R] 115 0 obj /K 0 << endobj /P 16 0 R << /K 0 However, for the more complicated multimodal problems, both Gaussian and Cauchy distributions improve the performance to some degree. /S /Part endobj /P 16 0 R /Nums [0 [36 0 R] endobj /S /Part 207 0 obj << 293 0 obj /Pg 364 0 R /P 16 0 R << /Count 5 endobj 255 [294 0 R] /Type /Pages /P 16 0 R /Pages 4 0 R �*x%gfV��%��j*%Uٻ��Z-�i8��\^�oW�]��=5��^he[�۵��@� ����~��J�o�hE�W�mh�@��� �����P�@ ?���\�'��w�:��R�:"h��I[ZBYj/��Ģ�(L�Z�d���. endobj Inscrivez-vous à notre newsletter hebdomadaire et recevez en cadeau un ebook au choix ! endobj << endobj 167 0 obj /S /Part endobj [4] Let X1, X, be a random sample of size 2, drawn from the (standard) Cauchy distribution. 236 [275 0 R] 276 0 obj >> 336 0 obj 120 0 obj 17 0 obj /S /Part /P 16 0 R /K 0 >> /P 16 0 R >> /Pg 470 0 R /P 16 0 R << << /P 16 0 R endobj >> 111 0 R 112 0 R 113 0 R 114 0 R 115 0 R 116 0 R 117 0 R 118 0 R 119 0 R 120 0 R endobj /K 0 endobj /P 16 0 R /P 16 0 R >> However, they have much heavier tails. >> 302 0 obj >> endobj << << >> /P 16 0 R /Pg 537 0 R /Creator (dvips\(k\) 5.86 Copyright 1999 Radical Eye Software) >> << >> endobj Viewed 206 times 1 $\begingroup$ The following problem is from the book, "Introduction to Probability" by Hoel, Port and Stone. 95 0 obj 175 0 obj endobj /K 0 /Pg 505 0 R 76 [115 0 R] /Subtype /XML /Pg 599 0 R /P 16 0 R This shows an example of a Cauchy distribution with various parameters. endobj 101 0 R 102 0 R 103 0 R 104 0 R 105 0 R 106 0 R 107 0 R 108 0 R 109 0 R 110 0 R 209 [248 0 R] On se souvient que la formulation du problème de Cauchy en théorie des distributions amène à étudier l'équation aux dérivées partielles en supposant que second membre et solution ont leur support dans le « futur » (c'est-à-dire le demi-espace t ≥ 0). /K 0 << /P 16 0 R /Type /Pages 94 0 obj /Type /Pages >> endobj /Pg 455 0 R endobj endobj /Parent 25 0 R /S /Part /S /Part /Type /Pages 52 [91 0 R] /S /Part /P 16 0 R 168 [207 0 R] (a) Show that this pdf is valid; i.e., show fy (v) integrates to 1. endobj /Kids [416 0 R 417 0 R 418 0 R 419 0 R 420 0 R] /S /Part /P 16 0 R >> /S /Part /Pg 414 0 R 328 0 obj 122 [161 0 R] << /S /Part 185 0 obj /P 16 0 R << A Problem related to the Cauchy Distribution. !IyR��Nhiz]t�]��.K@�v�u!i���EY��
{#��^��n=����dʦ���nM�J$�$��gaǨgCB��~�r��M��Y�^yW�w���^�LǕV��E�i��E�}0�pF��V�@ "|� �H!%F�R�q�A�����`����iV7���vGʛ����4�k[ut*�*-�e�\����:;!��Ǎ endobj /Pg 526 0 R >> /Pg 383 0 R ] 67 0 obj 196 0 obj /P 16 0 R endobj 233 [272 0 R] >> >> endobj /K 0 << 63 0 obj /Count 5 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 128 0 R 129 0 R 130 0 R nite only at t= 0. /Pg 557 0 R endobj 159 [198 0 R] /Pg 394 0 R /Kids [9 0 R 10 0 R] /P 16 0 R /P 16 0 R endobj /P 16 0 R << 38 0 obj >> 112 [151 0 R] /Pg 473 0 R 140 0 obj endobj /K 0 >> /K 0 /P 16 0 R endobj 58 0 obj 125 [164 0 R] /S /Part /Type /Pages >> /K 0 : […] /P 16 0 R /K 0 endobj /S /Part 288 0 obj 78 [117 0 R] /Parent 24 0 R /Pg 372 0 R /S /Part The Cauchy distribution is important as an example of a pathological case. 57 0 obj 214 [253 0 R]